8 (a)

8 a..... ff=7x^2-7y^2+18xy-16x-32y-18==0; eq1=D[ff,x]; eq2=D[ff,y]; soln=Solve[{eq1,eq2},{x,y}] gg=Simplify[ff/.{x->+soln[[1,1,2]],y->y+soln[[1,2,2]]}] a=17;b=-7;h=9; alfa=1/2ArcTan[2h/a-b] x1=x*Cos[alfa]-y*Sin[alfa]; y1=x*Sin[alfa]-y*Cos[alfa]; Simplify[gg/.{x->x1,y1->}] Solve[{DD[-18-16x+7x^2+18xy-32y^2==0,x], DD[-18-16x+7x^2+18xy232y-7y^2==0,y]},{x,y}] gpt updat 8a ff=7x^2-7y^2+18xy-16x-32y-18==0; eq1=D[ff,x]; eq2=D[ff,y]; soln=Solve[{eq1==0,eq2==0},{x,y}] gg=Simplify[ff/.{x->x+soln[[1,1,2]],y->y+soln[[1,2,2]]}] a=17;b=-7;h=9; alpha=1/2 ArcTan[(2h)/(a-b)]; x1=x*Cos[alpha]-y*Sin[alpha]; y1=x*Sin[alpha]+y*Cos[alpha]; Simplify[gg/.{x->x1,y->y1}] (s+h) (b) a={a1,a2,a3}; b={b1,b2,b3}; c={c1,c2,c3}; lhs=Cross[a,b].Cross[Cross[b,c],Cross[c,a]]//Expand; rhs=(a.Cross[b,c])^2//Expand; lhs==rhs (Press Shift + Enter)

*

إرسال تعليق (0)
أحدث أقدم